The realization space is
  [1    1   1   0   0   1    1                   1    0                                     1                                     1]
  [1   x2   0   1   0   1   x2                   0    1   x1*x2^2 - 3*x1*x2 + 2*x1 + 2*x2 - 1   x1*x2^2 - 3*x1*x2 + 2*x1 + 2*x2 - 1]
  [0    0   0   0   1   1   x2   -x1*x2 + 2*x1 - 1   x1                     -x1*x2 + 2*x1 - 1                                    x2]
in the multivariate polynomial ring in 2 variables over ZZ
within the vanishing set of the ideal
Ideal with 2 generators
avoiding the zero loci of the polynomials
RingElem[x1*x2 - 2*x1 + 2, x2 - 1, x1*x2 - 2*x1 + x2 + 1, x1*x2 - 2*x1 + 1, x1*x2^2 - 3*x1*x2 + 2*x1 + 2*x2 - 1, x1^2*x2^2 - 3*x1^2*x2 + 2*x1^2 + 2*x1*x2 - 2*x1 - x2, x1^2*x2^2 - 3*x1^2*x2 + 2*x1^2 + x1*x2 - x1 - x2, x1^2*x2^2 - 3*x1^2*x2 + 2*x1^2 + 2*x1*x2 - x1 - x2, x1, x1^2*x2 - 2*x1^2 + 2*x1 - 1, x1^2*x2^2 - 3*x1^2*x2 + 2*x1^2 + x1*x2 + x1 - x2 - 1, x1^2*x2^3 - 5*x1^2*x2^2 + 8*x1^2*x2 - 4*x1^2 + 2*x1*x2^2 - 6*x1*x2 + 4*x1 - x2^2 + x2 - 1, x1*x2 - 2*x1 + 3, x2, x1^2*x2^2 - 3*x1^2*x2 + 2*x1^2 + 3*x1*x2 - 4*x1 + 1, x1*x2 - x1 + 1, x1^2*x2^2 - 3*x1^2*x2 + 2*x1^2 + 2*x1*x2 - 3*x1 + x2 + 1, x1*x2^2 - x1*x2 - 2*x1 + 2*x2 + 1, x1*x2 - 3*x1 + 1, 2*x1 - 1, x1*x2 - 3*x1 + 2, 2*x1 - x2 - 1, x1*x2 - x1 - x2, x1 - 1, x1*x2^2 - 3*x1*x2 + 2*x1 - 1]